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Preface

Following the format of previous editions, the third edition of Principles of Environmental
Engineering and Science is designed for use in an introductory sophomore-level engineering
course. Basic, traditional subject matter is covered. Fundamental science and engineering princi-
ples that instructors in more advanced courses may depend upon are included. Mature under-
graduate students in allied fields—such as biology, chemistry, resource development, fisheries
and wildlife, microbiology, and soils science—have little difficulty with the material.

We have assumed that the students using this text have had courses in chemistry, physics,
and biology, as well as sufficient mathematics to understand the concepts of differentiation and
integration. Basic environmental chemistry and biology concepts are introduced at the beginning
of the book.

Materials and energy balance is introduced early in the text. It is used throughout the text as
a tool for understanding environmental processes and solving environmental problems. It is
applied in hydrology, sustainability, water quality, water and wastewater treatment, air pollution
control, as well as solid and hazardous waste management.

Each chapter concludes with a list of review items, the traditional end-of-chapter problems
and discussion questions. The review items have been written in the “objective” format of the
Accreditation Board for Engineering and Technology (ABET). Instructors will find this particu-
larly helpful for directing student review for exams, for assessing continuous quality improve-
ment for ABET and for preparing documentation for ABET curriculum review.

The third edition has been thoroughly revised and updated. The following paragraphs sum-
marize the major changes in this edition.

• Introduction
Data on per capita water consumption has been updated

• Biology
Addition of sections on enzyme kinetics and rates of cellular respiration
Expanded section on microbial transformations
Problems related to enzyme kinetics, rates of cellular respiration, and thermodynamics of bio-
logically mediated reactions

• Chemistry
New section on equilibrium among gases and liquids

• Ecosystems
Updated figures and charts

• Risk
Updated tables

• Hydrology
New section on water rights
New section on storm water management

• Sustainability
Major revision with a detailed discussion of water resources focusing on floods and droughts
with examples in the United States and in other countries
Updated tables and figures on energy and mineral resources
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• Water Quality Management
Updated figures and charts
New section on water source protection

• Water Treatment
Expanded overview of treatment systems
New section on coagulation theory
New section on membranes
Expansion of section on disinfection to include breakpoint chlorination and UV disinfection

• Wastewater Treatment
Material dealing with on-site disposal has been moved to a student website
Addition of a discussion of biological treatment of nitrogen and phosphorus
Addition of a discussion of Integrated Fixed Film Activated Sludge (IFAS)
Addition of a discussion of Moving Bed Biofilm Reactor (MBBR)
Revised and updated discussion of anaerobic digestion

• Air Pollution
Updated ambient air pollution standards
Addition of EPA methods for estimating emissions from power plants
Addition of Federal Motor Vehicle Standards
Discussion of CAFE standards
Update of global warming discussion
Addition of global warming potential data for selected compounds
Addition of air-to-fuel ratio calculations

• Solid Waste
Updated figures and charts

Cover Photographs
The photographs were chosen to represent the diverse aspects of environmental science and
engineering covered in this text. The upper photograph of Mont Blanc and the French and
Italian Alps was taken from Aiguille du Midi, overlooking Chamonix, France. As discussed in
Chapters 5 and 12, global climate change has had very significant effects on glaciers and alpine
ecosystems.

From left to right, the figures on the bottom represent various aspects of environmental
engineering. The photo on the left is taken of the Tollgate Stormwater Management System, a
constructed wetland project built to handle storm water from a subdivision in Lansing, Michigan.
The water is naturally filtered and cleansed, solving complex environmental and water man-
agement problems and ensuring that pollutants are not discharged to Red Cedar or Grand
Rivers, which flow through Lansing. The entire project cost less than one-third of that required
for traditional solutions.

The next photo is of Singapore’s Ulu Pandan Water Reclamation Plant. The plant treats
361,000 m3 of wastewater per day using membrane bioreactors. Off-gas treatment is used
for odor control. The effluent from the wastewater plant is further purified using advanced
membrane technologies and ultraviolet disinfection and is marketed as NEWater, primarily for
nonpotable industrial uses, although a small portion is blended with reservoir water for human
consumption.

The third photo from the left is of the Garreg Ddu Reservoir, which is part of the Elan Valley
Reservoir system in Wales, United Kingdom. The Elan Valley Reservoirs were constructed in the
19th century to serve the rapidly growing population of Birmingham, England. The city’s ex-
pansion during the Industrial Revolution had resulted in regular outbreaks of such waterborne
diseases as typhoid, cholera, and dysentery, resulting in the need for a source of clean, pure
water. The reservoir system, although now privately owned by Glas Cymru, continues to serve
Birmingham.

xii Preface
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The photo on the far right is taken in the filtration room of the John Dye Water Conditioning
Plant, which was built during the Great Depression and continues to serve the Lansing area.
It opened in 1940, and with its art deco architecture and three sets of Depression-era murals,
including one by Charles Pollock, brother to renowned artist Jackson Pollock, it is recognized as
an architectural icon. It produces 87,000 m3 of softened, clean drinking water to its customers
every day.

Online Resources
An instructor’s manual and set of PowerPoint slides are available online at www.mhhe.com/
davis for qualified instructors. Please inquire with your McGraw-Hill representative for the
necessary access password. The instructor’s manual includes sample course outlines, solved
example exams, and detailed solutions to the end-of-chapter problems. In addition, there are
suggestions for using the pedagogic aids in the next.

As always, we appreciate any comments, suggestions, corrections, and contributions for
future revisions.

Mackenzie L. Davis
Susan J. Masten

Preface xiii
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2 Chapter 1 Introduction

1–1 WHAT IS ENVIRONMENTAL SCIENCE?

Natural Science
In the broadest sense, science is systematized knowledge derived from and tested by recognition
and formulation of a problem, collection of data through observation, and experimentation. We
differentiate between social science and natural science in that the former deals with the study of
people and how they live together as families, tribes, communities, races, and nations, and the
latter deals with the study of nature and the physical world. Natural science includes such diverse
disciplines as biology, chemistry, geology, physics, and environmental science.

Environmental Science
Whereas the disciplines of biology, chemistry, and physics (and their subdisciplines of micro-
biology, organic chemistry, nuclear physics, etc.) are focused on a particular aspect of natural sci-
ence, environmental science in its broadest sense encompasses all the fields of natural science.
The historical focus of study for environmental scientists has been, of course, the natural envi-
ronment. By this, we mean the atmosphere, the land, the water and their inhabitants as differen-
tiated from the built environment. Modern environmental science has also found applications to
the built environment or, perhaps more correctly, to the effusions from the built environment. 

Quantitative Environmental Science
Science or, perhaps more correctly, the scientific method, deals with data, that is, with recorded
observations. The data are, of course, a sample of the universe of possibilities. They may be rep-
resentative or they may be skewed. Even if they are representative they will contain some random
variation that cannot be explained with current knowledge. Care and impartiality in gathering and
recording data, as well as independent verification, are the cornerstones of science.

When the collection and organization of data reveal certain regularities, it may be possible
to formulate a generalization or hypothesis. This is merely a statement that under certain cir-
cumstances certain phenomena can generally be observed. Many generalizations are statistical in
that they apply accurately to large assemblages but are no more than probabilities when applied
to smaller sets or individuals.

In a scientific approach, the hypothesis is tested, revised, and tested again until it is proven
acceptable.

If we can use certain assumptions to tie together a set of generalizations, we formulate a the-
ory. For example, theories that have gained acceptance over a long time are known as laws. Some
examples are the laws of motion, which describe the behavior of moving bodies, and the gas
laws, which describe the behavior of gases. The development of a theory is an important ac-
complishment because it yields a tremendous consolidation of knowledge. Furthermore, a theory
gives us a powerful new tool in the acquisition of knowledge for it shows us where to look for
new generalizations. “Thus, the accumulation of data becomes less of a magpie collection of
facts and more of a systematized hunt for needed information. It is the existence of classification
and generalization, and above all theory that makes science an organized body of knowledge”
(Wright, 1964).

Logic is a part of all theories. The two types of logic are qualitative and quantitative logic.
Qualitative logic is descriptive. For example we can qualitatively state that when the amount of
wastewater entering a certain river is too high, the fish die. With qualitative logic we cannot iden-
tify what “too high” means—we need quantitative logic to do that.

When the data and generalizations are quantitative, we need mathematics to provide a the-
ory that shows the quantitative relationships. For example, a quantitative statement about the
river might state that “When the mass of organic matter entering a certain river equals x kilo-
grams per day, the amount of oxygen in the stream is y.”

Perhaps more importantly, quantitative logic enables us to explore ‘What if?’ questions
about relationships. For example, “If we reduce the amount of organic matter entering the stream,
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how much will the amount of oxygen in the stream increase?” Furthermore, theories, and in par-
ticular, mathematical theories, often enable us to bridge the gap between experimentally con-
trolled observations and observations made in the field. For example, if we control the amount of
oxygen in a fish tank in the laboratory, we can determine the minimum amount required for the
fish to be healthy. We can then use this number to determine the acceptable mass of organic mat-
ter placed in the stream.

Given that environmental science is an organized body of knowledge about environmental
relationships, then quantitative environmental science is an organized collection of mathemat-
ical theories that may be used to describe and explore environmental relationships. 

In this book, we provide an introduction to some mathematical theories that may be used to
describe and explore relationships in environmental science.

1–2 WHAT IS ENVIRONMENTAL ENGINEERING?

Engineering
Engineering is a profession that applies science and mathematics to make the properties of mat-
ter and sources of energy useful in structures, machines, products, systems, and processes.

Environmental Engineering
The Environmental Engineering Division of the American Society of Civil Engineers (ASCE)
has published the following statement of purpose that may be used to show the relationship be-
tween environmental science and environmental engineering:

Environmental engineering is manifest by sound engineering thought and practice in the
solution of problems of environmental sanitation, notably in the provision of safe, palatable,
and ample public water supplies; the proper disposal of or recycle of wastewater and solid
wastes; the adequate drainage of urban and rural areas for proper sanitation; and the control
of water, soil, and atmospheric pollution, and the social and environmental impact of these
solutions. Furthermore it is concerned with engineering problems in the field of public
health, such as control of arthropod-borne diseases, the elimination of industrial health haz-
ards, and the provision of adequate sanitation in urban, rural, and recreational areas, and the
effect of technological advances on the environment (ASCE, 1977).

Neither environmental science nor environmental engineering should be confused with heat-
ing, ventilating, or air conditioning (HVAC), nor with landscape architecture. Neither should
they be confused with the architectural and structural engineering functions associated with built
environments, such as homes, offices, and other workplaces.

1–3 HISTORICAL PERSPECTIVE

Overview
Recognizing that environmental science has its roots in the natural sciences and that the most
rudimentary forms of generalization about natural processes are as old as civilizations, then
environmental science is indeed very old. Certainly, the Inca cultivation of crops and the mathe-
matics of the Maya and Sumerians qualify as early applications of natural science. Likewise the
Egyptian prediction and regulation of the annual floods of the Nile demonstrate that environ-
mental engineering works are as old as civilization. On the other hand if you asked Archimedes
or Newton or Pasteur what field of environmental engineering and science they worked in, they
would have given you a puzzled look indeed! For that matter, even as late as 1687 the word
science was not in vogue; Mr. Newton’s treatise alludes only to Philosophiae Naturalis Principa
Mathematics (Natural Philosophy and Mathematical Principles).

1–3 Historical Perspective 3
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4 Chapter 1 Introduction

Engineering and the sciences as we recognize them today began to blossom in the 18th cen-
tury. The foundation of environmental engineering as a discipline may be considered to coincide
with the formation of the various societies of civil engineering in the mid-1800s (e.g., the American
Society of Civil Engineers in 1852). In the first instances and well into the 20th century,
environmental engineering was known as sanitary engineering because of its roots in water
purification. The name changed in the late 1960s and early 1970s to reflect the broadening scope
that included not only efforts to purify water but also air pollution, solid waste management, and
the many other aspects of environmental protection that are included in the environmental engi-
neer’s current job description.

Although we might be inclined to date the beginnings of environmental science to the
18th century, the reality is that at any time before the 1960s there was virtually no reference to
environmental science in the literature.

Although the concepts of ecology had been firmly established by the 1940s and certainly
more than one individual played a role, perhaps the harbinger of environmental science as we
know it today was Rachel Carson and, in particular, her book Silent Spring (Carson, 1962). By
the mid-1970s environmental science was firmly established in academia, and by the 1980s rec-
ognized subdisciplines (environmental chemistry, environmental biology, etc.) that characterize
the older disciplines of natural sciences had emerged.

Hydrology
Citations for the following section originally appeared in Chow’s Handbook of Applied Hydrology
(1964). The modern science of hydrology may be considered to have begun in the 17th century
with measurements. Measurements of rainfall, evaporation, and capillarity in the Seine were
taken by Perrault (1678). Mariotte (1686) computed the flow in the Seine after measuring the
cross section of the channel and the velocity of the flow.

The 18th century was a period of experimentation. The predecessors for some of our current
tools for measurement were invented in this period. These include Bernoulli’s piezometer, the
Pitot tube, Woltman’s current meter, and the Borda tube. Chézy proposed his equation to describe
uniform flow in open channels in 1769.

The grand era of experimental hydrology was the 19th century. The knowledge of geology
was applied to hydrologic problems. Hagen (1839) and Poiseulle (1840) developed the equation
to describe capillary flow, Darcy published his law of groundwater flow (1856), and Dupuit
developed a formula for predicting flow from a well (1863).

During the 20th century, hydrologists moved from empiricism to theoretically based expla-
nations of hydrologic phenomena. For example, Hazen (1930) implemented the use of statistics
in hydrologic analysis, Horton (1933) developed the method for determining rainfall excess
based on infiltration theory, and Theis (1935) introduced the nonequilibrium theory of hydraulics
of wells. The advent of high-speed computers at the end of the 20th century led to the use of finite
element analysis for predicting the migration of contaminants in soil.

Water Treatment
The provision of water and necessity of carrying away wastes were recognized in ancient civi-
lizations: a sewer in Nippur, India, was constructed about 3750 B.C.E.; a sewer dating to the
26th century B.C.E. was identified in Tel Asmar near Baghdad, Iraq (Babbitt, 1953). Herschel
(1913), in his translation of a report by Roman water commissioner Sextus Frontinus, identified
nine aqueducts that carried over 3 × 105 m3 и dϪ1 of water to Rome in 97 A.D.

Over the centuries, the need for clean water and a means for wastewater disposal were dis-
covered, implemented, and lost to be rediscovered again and again. The most recent rediscovery
and social awakening occurred in the 19th century. 

In England, the social awakening was preceded by a water filtration process installed in Paisley,
Scotland, in 1804 and the entrepreneurial endeavors of the Chelsea Water Company, which
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installed filters for the purpose of improving the quality of the Thames River water in 1829
(Baker, 1981; Fair and Geyer, 1954). Construction of the large Parisian sewers began in 1833 and
W. Lindley supervised the construction of sewers in Hamburg, Germany, in 1842 (Babbitt, 1953).
The social awakening was led by physicians, attorneys, engineers, statesmen, and even the writer
Charles Dickens. “Towering above all was Sir Edwin Chadwick, by training a lawyer, by calling
a crusader for health. His was the chief voice in the Report from the Poor Law Commissioners on
an Inquiry into the Sanitary Conditions of the Labouring Populations of Great Britain, 1842”
(Fair and Geyer, 1954). As is the case with many leaders of the environmental movement, his
recommendations were largely unheeded.

Among the first recognizable environmental scientists were John Snow (Figure 1–1) and
William Budd (Figure 1–2). Their epidemiological research efforts provided a compelling
demonstration of the relationship between contaminated water and disease. In 1854, Snow
demonstrated the relationship between contaminated water and cholera by plotting the fatalities
from cholera and their location with reference to the water supply they used (Figures 1–3 and
1–4). He found that cholera deaths in one district of London were clustered around the Broad
Street Pump, which supplied contaminated water from the Thames River (Snow, 1965). In 1857,
Budd began work that ultimately showed the relationship between typhoid and water contamination.
His monograph, published in 1873, not only described the sequence of events in the propagation
of typhoid but also provided a succinct set of rules for prevention of the spread of the disease
(Budd, 1977). These rules are still valid expedients over 133 years later. The work of these two
individuals is all the more remarkable in that it preceded the discovery of the germ theory of disease
by Koch in 1876.

1–3 Historical Perspective 5

FIGURE 1–1

Dr. John Snow.

FIGURE 1–2

Dr. William Budd.
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6 Chapter 1 Introduction

FIGURE 1–3

Dr. Snow’s map of cholera fatalities in London, August 19 to September 30, 1854. Each bar ( ) represents one fatality.

In the United States a bold but unsuccessful start on filtration was made at Richmond,
Virginia, in 1832. No further installations were made in the United States until after the Civil
War. Even then, they were for the most part failures. The primary means of purification from the
1830s until the 1880s was plain sedimentation.
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It is worthy of note that the American Water Works Association (AWWA) was established in
1881. This body of professionals joined together to share their knowledge and experience. As
with other professional societies and associations formed in the late 1800s and early 1900s, the
activities of the Association provide a repository for the knowledge and experience gained in
purifying water. It was and is an integral part of the continuous improvement in the purification
of drinking water. It serves a venue to present new ideas and challenge ineffective practices. Its
journal and other publications provide a means for professionals to keep abreast of advances in
the techniques for water purification.

Serious filtration research in the United States began with the establishment of the Lawrence
Experiment Station by the State Board of Health in Massachusetts in 1887. On the basis of
experiments conducted at the laboratory, a slow sand filter was installed in the city of Lawrence
and put into operation in 1887.

At about the same time, rapid sand filtration technology began to take hold. The success
here, in contrast to the failure in Britain, is attributed to the findings of Professors Austen and
Wilber at Rutgers University and experiments with a full-scale plant in Cincinnati, Ohio, by
George Warren Fuller. Austin and Wilber reported in 1885 that the use of alum as a coagulant
when followed by plain sedimentation yielded a higher quality water than plain sedimentation
alone. In 1899, Fuller reported on the results of his research. He combined the coagulation-
settling process with rapid sand filtration and successfully purified Ohio River water even during
its worst conditions. This work was widely disseminated.

The first permanent water chlorination plant anywhere in the world was put into service in
Middlekerrke, Belgium, in 1902. This was followed by installations at Lincoln, England, in 1905
and at the Boonton Reservoir for Jersey City, New Jersey, in 1908. Ozonation began about the
same time as chlorination. However, until the end of the 20th century, the economics of disinfec-
tion by ozonation were not favorable.

Fluoridation of water was first used for municipal water at Grand Rapids, Michigan, in 1945.
The objective was to determine whether or not the level of dental cavities could be reduced if the
fluoride level were raised to levels near those found in the water supplies of populations having
a low prevalence of cavities. The results demonstrated that proper fluoridation results in a
substantial reduction in tooth decay (AWWA, 1971).

The most recent major technological advance in water treatment is filtration with synthetic
membranes. First introduced in the 1960s, membranes became economical for application in
special municipal applications in the 1990s.

Wastewater Treatment
Early efforts at sewage treatment involved carrying the sewage to the nearest river or stream.
Although the natural biota of the stream did indeed consume and thus treat part of the sewage, in
general, the amount of sewage was too large and the result was an open sewer.

In England, the Royal Commission on Rivers Pollution was appointed in 1868. Over the
course of their six reports, they provided official recognition (in decreasing order of preference)
of sewage filtration, irrigation, and chemical precipitation as acceptable methods of treatment
(Metcalf and Eddy, 1915).

At this point in time, events began to move rather quickly in both the United States and England.
The first U.S. treatment of sewage by irrigation was attempted at the State Insane Asylum in
August, Maine, in 1872.  

The first experiments on aeration of sewage were carried out by W. D. Scott-Monctieff at
Ashtead, England, in 1882 (Metcalf and Eddy, 1915). He used a series of nine trays over which
the sewage percolated. After about 2 days operation, bacterial growths established themselves on
the trays and began to effectively remove organic waste material.

With the establishment of the Lawrence Laboratory in Massachusetts in 1887, work on
sewage treatment began in earnest. Among the notables who worked at the laboratory were Allen

8 Chapter 1 Introduction
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1–3 Historical Perspective 9

Hazen, who was in charge of the lab in its formative years, and the team of Ellen Richards and
George Whipple, who were among the first to isolate the organisms that oxidized nitrogen com-
pounds in wastewater.

In 1895, the British collected methane gas from septic tanks and used it for gas lighting
in the treatment plant. After successful development by the British, the tricking filter was
installed in Reading, Pennsylvania, Washington, Pennsylvania, and Columbus, Ohio in 1908
(Emerson, 1945).

In England, Arden and Lockett conducted the first experiments that led to the development
of the activated sludge process in 1914. The first municipal activated sludge plant in the United
States was installed in 1916 (Emerson, 1945).

The progress of the state of the art of wastewater treatment has been recorded by the Sanitary
Engineering Division (later the Environmental Engineering Division) of the American Society of
Civil Engineers. It was formed in June 1922. The Journal of the Environmental Engineering
Division is published monthly. The Federation of Sewage and Industrial Wastes Association, also
known as the Water Pollution Control Federation, was established in October 1928 and publishes
reports on the advancement of the state of the art. Now called the Water Environment Federation
(WEF), its journal is Water Environment Research.

Air Pollution Control
Although there were royal proclamations and learned essays about air pollution as early as 1272,
these were of note only for their historic value. The first experimental apparatus for clearing par-
ticles from the air was reported in 1824 (Hohlfeld, 1824). Hohlfeld used an electrified needle to
clear fog in a jar. This effect was rediscovered in 1850 by Guitard and again in 1884 by Lodge
(White, 1963).

The latter half of the 19th century and early 20th century were watershed years for the intro-
duction of the forerunners of much of the current technology now in use: fabric filters (1852),
cyclone collectors (1895), venturi scrubbers (1899), electrostatic precipitator (1907), and the
plate tower for absorption of gases (1916). It is interesting to note that unlike water and waste-
water treatment where disease and impure water were recognized before the advent of treatment
technologies, these developments preceded the recognition of the relationship between air pollu-
tion and disease.

The Air & Waste Management Association was founded as the International Union for Pre-
vention of Smoke in 1907. The organization grew from its initial 12 members to more than 9000
in 65 countries.

The 1952 air pollution episode in London that claimed 4000 lives (WHO, 1961), much like
the cholera epidemic of 1849 that claimed more than 43,000 lives in England and Wales, finally
stimulated positive legislation and technical attempts to rectify the problem.

The end of the 20th century saw advances in chemical reactor technology to control sulfur
dioxide, nitrogen oxides, and mercury emissions from fossil-fired power plants. The struggle to
control the air pollution from the explosive growth in use of the automobile for transportation
was begun.

Environmental scientists made major discoveries about global air pollution at the end of the
20th century. In 1974, Molina and Rowland identified the chemical mechanisms that cause
destruction of the ozone layer (Molina and Rowland, 1974). By 1996, the Intergovernmental
Panel on Climate Change (IPCC) agreed that “(t)he balance of evidence suggests a discernable
human influence on global climate” (IPCC, 1996).

Solid and Hazardous Waste
From as early as 1297, there was a legal obligation on householders in London to ensure that the
pavement within the frontage of their tenements was kept clear (GLC, 1969). The authorities
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